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A mathematical model for a #exible arm undergoing large planar #exural deformations,
continuously rotating under the e!ect of a hub torque and supported by a #exible base is
developed. The position of a typical material point along the span of the arm is described
using the inertial reference frame via a transformation matrix from the body co-ordinate
system, which is attached to the #exible root of the rotating arm. The condition of
inextensibility is employed to relate the axial and transverse de#ections of the material point,
within the beam body co-ordinate system. The position and velocity vectors obtained, after
imposing the inextensibility conditions, are used in the kinetic energy expression while the
exact curvature is used in the potential energy. Lagrangian dynamics in conjunction with the
assumed modes method is utilized to derive, directly, the non-linear equivalent temporal
equations of motion. The resulting non-linear model, which is composed of four coupled
non-linear ordinary di!erential equations, is discussed, simulated and the results of this
simulation are presented. The e!ects of the base #exibility are explored by comparing the
resulting simulation results, for various #exibility coe$cients, with previously published
works of the authors. Moreover, the numerical results show that the base #exibility has
a very important e!ect on the stability of rotating #exible arms that should be accounted for
when simulating such systems.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The use of lightweight structural elements in space applications as well as in robotic
manipulators under the requirement of precise positioning has increased the interest in
having a precise model that closely represents such mechanical systems and accounts for all
their conditions. Based on the fact that such structures have inherent lateral #exibility as
well as axial rigidity, the problem of the axial displacement due to bending deformations has
been identi"ed as a major contributor to what is known as geometric sti!ening. Geometric
sti!ening, due to axial shortening, was shown to have a signi"cant e!ect on the stability of
such rotating #exible structures and on their positioning control. It became evident that
a model of a rotating long-slender #exible arm that accounts for the e!ect of axial
displacement, due to bending deformations, based on physically justi"ed geometrical
considerations which also considers the inherent #exibility of the supporting base is highly
demanded.

The e!ect of rotation on the natural frequencies and mode shapes of a rotating beam was
reported earlier by Shilhansi [1] and Prudli [2]. These studies have shown that the rotation
speed strengthens the beam and produces high natural frequencies. Likins [3] reported
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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a study on the mathematical modelling of spinning elastic bodies. In the same direction,
Kaza and Kavternik [4] reported the results of a study on the non-linear #ap}lag}axial
equations of a rotating beam. They addressed the problem of axial rigidity and the
shortening due to transverse de#ection. Kaza and Kavternik [4] summarized the four
methods accounting for the beam axial rigidity. Stephens andWang [5] studied the e!ect of
uniform high-speed rotation on the stretching and bending of a rotating beam. They
accounted for the beam rotation dynamics in terms of a tensile force that produced axial
stress on the beam. In the aforementioned studies, the e!ect of rotation was taken as
a kinematic variable in the form of angular velocity and angular acceleration to be given to
the elastic equations which in turn are solved for the natural frequencies and mode shapes.
Kane et al. [6] studied the dynamic behaviour of a cantilever beam that is attached to rigid
base and performing speci"ed motion of rotation and translation. In their work, the elastic
degrees of freedom included beam axial extension, bending in two planes, torsion, shear
displacement and wrapping. The model is a general three-dimensional elastic beam model.
However, the two-way coupling between the rigid body motion and elastic de#ections was
not accounted for because only speci"ed rigid body motions were considered.

Themultibody dynamic approach, in which the rigid motion and #exible deformation are
modelled in their coupled form, has attracted many researchers. Baruh and Tadikonda [7]
reported some issues in the dynamics and control of #exible robot manipulators. They
addressed the problem of axial shortening due to bending deformations by considering the
shortening in their kinetic energy expression. Their results have shown that the #exibility of
the rotating arm has changed the desired "nal rigid body position. Tadikonda and Chang
[8] reported the e!ect of end load, due to chain connections on the geometric sti!ening.
Yigit et al. [9] studied the dynamics of a radially rotating beam with impact. They modelled
the rigid body motion and the beam elastic co-ordinates using a partial di!erential equation
and Galerkin's method of approximation. The e!ect of beam axial shortening due to
bending deformation and the resulting beam sti!ening was considered in their equations.
However, the model showed linear inertial coupling between the beam rigid body rotation
and its elastic de#ections and the e!ect of shortening appeared as a function of square of
beam rigid body rotating speed in the sti!ness term. Pan et al. [10] reported a dynamic
model and simulation results of a #exible robot arm with prismatic joint. They accounted
for the e!ect of axial shortening using a virtual work term added to the elastic potential
energy. El-Absy and Shabana [11] studied the geometric sti!ness for a rotating beam using
di!erent approaches. They introduced the e!ect of longitudinal deformation due to
bending, in the equations of motion, using the principle of virtual work. Al-Bedoor [12]
studied the e!ects of shaft torsional #exibility on the dynamics of rotating blades. The e!ect
of axial shortening was accounted for by using the virtual work in the form of added
potential energy due to the centrifugal forces. Numerical simulations have shown that the
#exibility and the sti!ening e!ect contribute to the rigid body inertia by quadratic terms.
The e!ect of inextensibility condition on the dynamics of rotating #exible arm and its
associated dynamic non-linearity was recently reported by Al-Bedoor and Hamdan [13].
Their numerical results showed that the non-linear terms can improve the stability of the
system's dynamic behaviour.

To this end, one can conclude that the available dynamic models of rotating beams that
included the e!ect of axial shortening and its resulting geometrical sti!ening did not
consider the more general case where the base is #exible. Such a general case produces
a higher order model with more dynamic interactions and non-linearities, thus closely
simulating the actual dynamic behaviour of the system.

This paper presents a mathematical model and simulation results for a rotating #exible
slender arm supported by a laterally #exible base. The multibody dynamic approach is



Figure 1. Schematic diagram of the arm}hub}#exible base system.
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followed in developing the model by attaching body co-ordinate system to the hub at the
root of the arm. The position vector of a typical material point is used in deriving the kinetic
energy expression which includes the base 2-d.o.f. motion, the rigid body rotation of the
hub}arm system, the arm transverse de#ection and its associated axial shortening, that are
included in the system kinetic energy. The geometrically exact curvature is employed in
expressing the arm elastic potential energy. The system Lagrangian in conjunction with the
assumed modes method, and after imposing the beam inextensibility constraint, is used to
develop a 4-d.o.f. system. The 4-d.o.f. being the horizontal and vertical position of the
hub}arm assembly, the rigid body rotation of the hub, and the transverse de#ection of the
beam in the modal domain.

2. THE ELASTODYNAMIC MODEL

2.1. SYSTEM DESCRIPTION AND ASSUMPTIONS

Figure 1 shows a schematic of the arm}hub system under consideration. X>Z denotes
the inertial reference frame that is "xed in space, while the xyz is a system of orthogonal axes
rotating with the hub with its origin "xed to the root of the beam and the x-axis is oriented
along the neutral axis of the beam in the unde#ected con"guration. The hub is assumed to
be #exible with linear sti!nessesK

�
andK

�
. It has a radius R

�
and is rotating about an axis

passing through its moving centre O. The beam is assumed to be initially straight,
cantilevered at the base having uniform cross-section A, #exural rigidity EI, constant
length l and mass per unit length �. The thickness of the beam is assumed to be small
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compared to the beam length so that the e!ects of shear deformations and rotary inertia can
be neglected. The beam motion is assumed to be con"ned to the x}y plane (i.e., only
in-plane #exural motion is allowed). Furthermore, it is assumed that the "rst mode tip peak
amplitude in this planar #exural vibrations may reach relatively large values (can be of the
order of the beam length), but the slope of the elastica may not have tangents perpendicular
to the neutral axis. The e!ect of shortening due to beam transverse deformation, determined
using the inextensibility condition [13}15], and its time derivative is used to eliminate the
dependence of the beam Lagrangian on the axial displacement and the axial velocity. In the
following sub-sections, the governing temporal equations of motion are formulated via
a combined Lagrangian-assumed mode method.

2.2. THE KINETIC ENERGY EXPRESSION

To develop the kinetic energy expression for the rotating arm}hub system, the deformed
con"guration of the arm, shown in Figure 1, is used. The global position vector of a material
point P, located on the arm, can be written as

R
�
"R

�
#R

�
#[A(�)]r

�
, (1)

where r
�
is the position vector of point P in the hub co-ordinate system xy, [A(�)] is

the rotational transformation matrix from the hub co-ordinate system to the inertial
reference frame,X>, R

�
is the position vector of the origin of the hub co-ordinate system xy

in the inertial reference frame. R
�
is the position vector of the hub centre in the inertial

reference frame. R
�

and R
�
can be represented, respectively, as follows:

R
�

"R
�
cos �I#R

�
sin �J,

R
�
"X

�
I#>

�
J

(2)

and the position vector r
�
of the material point P in the xy co-ordinate system can be

written in the form

r
�
"(s!u(s, t)) i#v(s, t) j , (3)

where s is the unde#ected position, u(s, t) is the axial shortening due to bending deformation
and v (s, t) is transverse de#ection of the material point P measured with respect to the hub
co-ordinate system, xy, which has the unit vectors i and j. The rotational transformation
matrix [A(�)] can be represented as

[A (�)]"�
cos �
sin �

!sin �
cos �� , (4)

where � represents rigid body rotation of the arm.
The velocity vector of the material point P in the inertial reference frame can be obtained

by di!erentiating equation (1) as follows:

R�
�
"R�

�
#R�

�
#[A (�)]r�

�
#�� [A�(�)]r� , (5)

where [A�] is the derivative [dA/d�].
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Upon substituting for R
�
, R

�
[A�], r� and r�

�
into equation (5), the velocity vector of the

material point P in the inertial reference frame can be obtained.
The kinetic energy of the beam can be found from

;
�
"

1

2 �
�

�

�R� �
�
R�

�
) ds, (6)

where � is the beam mass per unit length and l is the beam length.
The kinetic energy of the hub which is assumed to be a uniform disk with radius R

�
and

mass m
�
rotating at angular velocity �Q and translating against two springs in the vertical

and horizontal directions, can be represented as follows:

;
�
"�

�
m

�
XQ �

�
#�

�
m

�
>Q �#�

�
m

�
R�

�
�Q �. (7)

Now, the total kinetic energy expression of the system can be written as follows:

;";
�
#;

�
. (8)

2.3. POTENTIAL ENERGY EXPRESSION

The system potential energy is constituted of the beam elastic strain energy and the base
elastic potential energy. The arm is assumed to be rotating in the horizontal plane that
results in no gravitational potential energy. The elastic beam strain energy with #exural
rigidity EI(x) is given by

<
�
"

1

2 �
�

�

EI (s)K�ds, (9)

where K is the curvature of the beam centre-line at point s, which will be evaluated in the
following sub-sections based on the inextensibility condition.

2.4. THE INEXTENSIBILITY CONDITION

For the present two-dimensional beam problem, Figure 2, the inextensibility condition
dictates that total axial shortening u(s, t) is given by [15]

�u(�, t)"�!�
�

�

cos� (�, t) d�, (10)

where �"s/l and �"1/l. Noting that cos�"�1!sin��, sin�"dv/ds and expanding
the term [1!(�v��)]��� in the power series, assuming that (�v� )��1, and retaining the terms
up to the fourth order, the axial position of material point can be represented as follows:

u"
1

2 �
�

�
��v��#

1

4
��v���d�, (11)

where the prime is the derivative with respect to the dimensionless parameter, �.



Figure 2. De#ected con"guration of the beam segment.
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Di!erentiating equation (11) with respect to time yields

uR "
1

2

d

dt � �
�

�
��v��#

1

4
��v���d�� . (12)

In order to express the exact curvature in terms of the transverse de#ection v only, the
analysis presented in reference [15] is employed. Accordingly, one notes that the curvature
is

K"��, (13)
where

sin�"�v�. (14)

Di!erentiating equation (14) and noting, as before, that cos�"�1!sin��, sin�"dv/ds
and expanding the term [1!(�v��)]��� in the power series, assuming that (�v�)��1, and
retaining the terms up to the fourth order leads to

K�"��v	�#��v��v	�. (15)

Upon substituting equation (11) for the axial position and its time derivative, equation (12)
and the curvature equation (15) into the kinetic and potential and energy expressions, the
Lagrangian of the system can be obtained.

In addition to the Lagrangian, the virtual work done by the external torque applied at the
hub can be represented in the form


="¹
�. (16)
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2.5. THE ASSUMED MODES (AMM)

The assumed modes method is used in discretizing the beam elastic deformation, v (s, t)
used in the Lagrangian expression relative to the hub co-ordinate system, as follows:

v (s, t)"
	
�

��

�


(s)q



(t), (17)

where N is the number of modes, q


is the vector of modal co-ordinates, which is time

dependent, and �


is the vector of the assumed modes.

Upon substituting the assumed modes approximation, AMM, for the beam deformation,
equation (17), and forming the Lagrangian expression, de"ning b

�
"[C�(1#1/2�)#

C/2#1/3] as a dimensionless inertia coe$cient with C"R
�
/l as the ratio of the hub

radius to the beam length and �"m
�
/m

�
as the mass ratio of the hub to the beam gives the

coe$cients b


as follows:
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l�m
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, (18)

where �


is the mode shape of the cantilever beam.

2.6. THE EQUATIONS OF MOTION

By applying the Euler}Lagrange's equation to the system Lagrangian, the system
equations of motion are obtained as follows:

(1#�)XG
�
#�

�
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�
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�
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TABLE 1

Arm}hub data

Property Value

Arm length l 3)0m
Arm mass per unit length, � 4)015kg/m
Arm #exural rigidity, EI 756)0N/m�
Hub radius, R

�
0)2m

Basic hub mass m
�

50 kg
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(22)

Equations (19)}(22) represent the equations of motion of an inextensible beam, rotating
around its hub centre which is, simultaneously, moving against a #exible base. The system is
four-coupled non-linear di!erential equations for the system degrees of freedom X

�
, >

�
as

the two directional motions of the base, � as the rigid body rotation and q as the beam with
modal degree of freedom. The base #exibility is de"ned as a ratio to the beam #exibility
using the parameters s

�
"K

�
l�/EI and s

�
"K

�
l�/EI.

3. NUMERICAL SIMULATION

The computational process started with the evaluation of the coe$cients, equations (18),
for the cantilever beam mode shapes. The system of non-linear second order equations,
equations (19)}(22), is simulated using the MATLAB software. The dimension and material
properties of the arm}hub system are given in Table 1.

The inverse dynamic procedure is used to design an open-loop positioning torque, which
accounts for the rigid body inertia that is known. The sinusoidal torque pro"le that is
employed to rotate the system, with 3m long #exible arm, an angle of /8 in 5 s is shown in
Figure 3. The system is "rst simulated with a relatively rigid base with spring coe$cients
K

�
"1�10�N/m and K

�
"1�10�N/m. The resulting arm angular velocity is shown in

Figure 4 and the arm equivalent angular position is shown in Figure 5. The associated hub
horizontal and vertical de#ections are shown in Figures 6 and 7, respectively, wherein, both
hub de#ections are shown to be a!ected by the applied torque period. The non-dimensional
"rst mode de#ection of the rotating arm is shown in Figure 8. In Figures 6}8, the dynamic
system shows damping e!ects, although no arti"cial damping is added in this simulation, to



Figure 3. Torque pro"le.

Figure 4. Angular hub velocity.
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the system. The e!ect of damping is most likely developed as a result of non-linear dynamic
interaction between di!erent degrees of freedom and thus the energy exchange.

The system is then simulated for a soft base, K
�
"100N/m and K

�
"100 N/m by

applying the same torque pro"le shown in Figure 3. The resulting arm angular velocity is



Figure 5. Angular hub position.

Figure 6. Horizontal hub displacement.
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shown in Figure 9, which shows that at the end of the torque period, the arm is rigidly
oscillating with increasing amplitude. This angular velocity behaviour does not show when
the base sti!ness is high. The arm equivalent rigid body angular position, Figure 10, shows
little e!ects due to low base #exibility. The hub horizontal and vertical de#ections are



Figure 7. Vertical hub displacement.

Figure 8. Tip de#ection.
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shown in Figures 11 and 12 respectively. The hub horizontal and vertical motion occurs at
its own natural frequency as shown in Figures 11 and 12, however, with increasing
amplitude. The more interesting feature is the arm "rst mode of vibration shown in
Figure 13. The "rst mode arm de#ection is shown to exhibit an increasing amplitude



Figure 9. Angular hub velocity (low hub sti!ness).

Figure 10. Angular hub velocity (low hub sti!ness).
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vibration when using a very #exible base at its own natural frequency. The system is
simulated for many base sti!ness coe$cients reaching zero sti!ness, i.e., hub without any
support. The results have shown that the sti!ness of the base plays a very important role in
the dynamic behaviour of rotating #exible arms and should be considered when modelling
and controlling such systems.



Figure 11. Horizontal hub displacement (low hub sti!ness).

Figure 12. Vertical hub displacement (low hub sti!ness).
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4. CONCLUSIONS

In this paper, a mechanical model for a rotating #exible arm undergoing large planar
#exural deformations, continuously rotating under the e!ect of hub torque and supported



Figure 13. Tip de#ection (low hub sti!ness).
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by a #exible base is developed. The position of a typical material point along the span of
the arm is described using the inertial reference frame via a transformation matrix from the
body co-ordinate system, which is attached to the #exible root of the rotating arm. The
condition of inextensibility is employed to relate the axial and transverse de#ections of the
material point, within the beam body co-ordinate system. The position and velocity vectors
obtained, after imposing the inextensibility conditions, are used in the kinetic energy
expression while the exact curvature is used in the potential energy. The Lagrangian
dynamics in conjunction with the assumed modes method is utilized to derive directly the
non-linear equivalent temporal equations of motion. The resulting non-linear model, which
is composed of four coupled non-linear ordinary di!erential equations, is discussed,
simulated and the results of the simulation are presented. The e!ects of the base #exibility
are explored by comparing the resulting simulation results, for various #exibility coe$cients,
reaching a non-supported case. The numerical results showed that the base #exibility has
a signi"cant e!ect on the dynamics of rotating #exible arms. There exists a sti!ness for the
base, below which the base has a destabilizing e!ect on the arm #exural vibrations, which in
turn is also re#ected in the arm}hub system rigid-body angular velocity.
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